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Abstract. We analyse the spectrum of the ‘local’ Iwatsuka model, i.e. a two-dimensional
charged particle interacting with a magnetic field which is homogeneous outside a finite strip and
translationally invariant along it. We derive two new sufficient conditions for absolute continuity
of the spectrum. We also show that in most cases the number of open spectral gaps of the model is
finite. To illustrate these results we numerically investigate the situation when the field is zero in
the strip being screened, e.g., by a superconducting mask.

1. Introduction

There has been a renewed interest recently to problems of magnetic transport in two-
dimensional systems. Several papers [MMP, FGW1, BP] investigated the influence of a
weak disorder on current-carrying edge states in a halfplane [Ha, MS], or in a more general
domain [FGW2]: roughly speaking, it has been shown that away of the Landau levels
the transport survives for both the confining-potential and Dirichlet-boundary border of the
halfplane, and that the same is true for Dirichlet regions containing an open wedge.

On the other hand, it has been known for a long time that transport can be achieved by a
suitable variation of the magnetic field alone [Iw] if the latter is translationally invariant in one
direction. A simple example is represented by the field assuming two different nonzero values
in two halfplanes. It has an illustrative semiclassical interpretation in terms of cyclotronic
radii [CFKS, section 6.5]. On the other hand, the spectrum of this generic Iwatsuka model is
purely absolutely continuous, while classically there are many localized states; this shows that
here the extended character of quantum states plays an important role.

Furthermore, the transport does not require the existence of different asymptotics; it is
possible even if a variation of a constant nonzero magnetic field is restricted to a planar strip, i.e.
its transverse profile has a compact support. Two sufficient conditions for absolute continuity
of the spectrum are known in this case. In the original paper [Iw] it was shown to be the
case if the field derivative has opposite signs to both sides of a given point. Later Mantoiu
and Purice [MP] derived what could be called the ‘first and third quadrant’ condition, i.e. the
requirement that ±B(x1) � ±B(x0) � ±B(x2) holds for some x0 and all x1 � x0 � x2.

In the next section we discuss the ‘local’ Iwatsuka model. For the sake of completeness
we briefly describe the procedure of its solution; we skip some details because the subject is
discussed thoroughly in [Iw, MP]. We shall derive a pair of new sufficient conditions for the
absolute continuity. The first one is a global assumption of the above type: it requires that
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the field variation is nonzero and does not change sign in the strip under consideration. The
other is a rather weak local condition: it is enough that the variation has at least a powerlike
growth from zero at the vicinity of the strip edge. The main new ingredient in the second
case is a semiclassical estimate of the transverse eigenfunction tails. Note also that we shall
not need the assumption of global field positivity employed in [Iw, MP]. Our conditions
strengthen the existing results and represent a step towards the proof of a conjecture put forth
in [CFKS, section 6.5] which states that any nonzero (translationally invariant) field variation
spreads the Landau levels into a purely absolutely continuous spectrum.

One is also interested, of course, how the spectrum looks as a set. In particular, it is natural
to ask whether the spectral bands can overlap, and if so, what is the number of open gaps left.
This question is addressed in section 3. We show there that the number of open gaps is finite
provided the field variation has a nonzero mean. The case of zero mean is more delicate and
we limit ourselves to demonstrating that the conclusion persists under a particular assumption.
We believe, however, that the restrictions are of a rather technical nature and we conjecture
that the finiteness of open-gap number holds generally for the local Iwatsuka model, up to
possible regularity requirements imposed on the field.

The above-mentioned mathematical properties of the model represent just one of possible
motivations. On the physical side, there has been an interest recently [RPM] in the behaviour
of an electron gas in a thin film under the influence of a perpendicular magnetic field which is
screened in a part of the plane by a superconducting ‘mask’. A circular ‘anti-dot’ represents
a solvable case which is treated in [RPM] within several different models.

Suppose now that the mask has the form of a straight strip†. Then we get a particular
case of our model, and consequently, the magnetic field creates states which are localized
transversally and move along the strip. The form of these states, in particular, their ‘distance’
from the strip is controlled by the velocity; the transverse eigenenergies of fast states are close to
the Landau levels of the constant ‘external’ field. In section 4 we shall investigate numerically
two variants of such a system, one with an ideal screening and one with an ‘overshoot’: we
will compute the band profiles and illustrate the band overlapping‡.

2. Local Iwatsuka model

2.1. Description of the model

We consider a charged particle confined to a plane and interacting with a magnetic field
perpendicular to the plane. Our basic assumption is that field is translationally invariant in the
y-direction, nonzero and constant away from a strip of a width 2a.

Assumption (a). The functional form of the field is

B(x, y) = B(x) = B + b(x)

where B > 0 and b is bounded and piecewise continuous with supp b ⊆ [−a, a]. With
an abuse of notation, we employ the same symbol for functions on R and R

2 if they are
independent of one variable.

† A negative image situation with a field constant within a strip and zero otherwise was treated in [Ca]. Here
the spectral picture is more complicated: there are transverse eigenvalues of ‘slow’ enough states embedded in the
continuum. The same system and several related structures were studied also in [PM].
‡ After finishing this paper we learned about recent results of Kim et al [KISC] who studied properties of a nonmagnetic
ring. In that case, of course, the spectrum remains to be pure point but one can see a transport analogous to the one
discussed here in form of ‘edge states’ moving along the ring.
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As usual in translationally invariant situations we employ the Landau gauge, i.e. we choose
the corresponding vector potential in the form

Ax = 0 Ay(x) = Bx + a(x)

with

a(x) :=
∫ x

0
b(t) dt.

We adopt the natural system of units in which 2m = h̄ = c = |e| = 1 and assume also that the
particle charge equals −|e| having in mind an electron. Then the Hamiltonian H ≡ H(B, b)

of our system is

H = (p + A)2

with the appropriate domain in L2(R2).
SinceH commutes with y-translations, it allows for a standard decomposition. Mimicking

the argument of [Iw, section 2] we find that it is unitarily equivalent to the direct integral∫ ⊕
H(p) dp (2.1)

with the fibre space L2(R) and fibre operator

H(p) = −∂2
x + (p + xB + a(x))2. (2.2)

Since the function a is bounded, the potential is for a fixed p ∈ R dominated by the
oscillator term, D(H(p)) = D(−∂2

x ) ∩ D(x2), the spectrum of H(p) is purely discrete and
consists of a sequence of eigenvalues εn(p) accumulating at +∞—see [RS, theorem 13.16].

In the absence of the perturbation b the spectrum consists of the Landau levels, {(2n+1)B :
n ∈ N0}. We shall first show that the latter belong to the spectrum in the perturbed case too,
at least as its accumulation points.

Lemma 2.1. εn(p) → (2n + 1)B as |p| → ∞ for any n ∈ N0.

Proof. We introduce a new variable z and numbers a+, a− by

z = x + p/B a± =
∫ ±a

0
b(x) dx. (2.3)

Then we have H(p) = −∂2
z + Vp(z) with Vp(z) = B2(z + B−1a(z − p/B))2. Outside

[p/B − a, p/B + a] the potential Vp(z) is quadratic and equal to B2(z + B−1a∓)2 for
z < (p/B − a) and z > (p/B + a), respectively. Thus Vp converges for |p| → ∞ pointwise
to the potential of the harmonic oscillator Hamiltonian,

H0 = −∂2
z + V0 V0(z) = Bz2. (2.4)

Now we employ a simple trick [BEZ]: we check the resolvent convergence on functions
f = (H0 − µ)φ with φ ∈ C∞

0 (R). For any µ ∈ ρ(H(p)) we have

‖(H(p) − µ)−1f − (H0 − µ)−1f ‖ = ‖(H(p) − µ)−1(V0 − Vp)φ‖ → 0

as |p| → ∞ in view of the compact support. However, such f form a dense set in L2(R), and
therefore H(p) → H0 in the strong resolvent sense and the claim follows by theorem 8.1.14
of [Ka]. �
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2.2. Absolute continuity

Next we want to give sufficient conditions under which the spectrum is absolutely continuous.
We start with analyticity of the perturbation.

Lemma 2.2. {H(p) : p ∈ R ∪ {∞}} is an analytic family of type (A). In particular, each εn(·)
is an analytic function.

Proof. Let us first check the analyticity at infinity. We write

H(p) = H0 + a(x)(2p + 2Bx + a(x))

where H0 is oscillator Hamiltonian (2.4). Since a is bounded by assumption, we have to check
H0-boundedness of the second term at the rhs with a suitable relative bound. From the Schwarz
inequality we have

‖zf ‖ � ‖(I + z2)−1z‖‖(I + z2)f ‖ � C(‖z2f ‖ + ‖f ‖) (2.5)

since z �→ z(1 + z2)−1 belongs to L2(R). Given f ∈ D(zm) denote fη(z) := η3/2f (ηz); then
‖zmfη‖ = η1−m‖zmf ‖. Thus (2.5) acquires the form

‖zf ‖ � Cη−1‖z2f ‖ + Cη‖f ‖ (2.6)

in other words for any α′ > 0 we can find β ′ > 0 such that

‖zf ‖ � α′‖z2f ‖ + β ′‖f ‖. (2.7)

On the other hand,

‖(P 2 + B2z2)f ‖2 = ((P 4 + B4z4 + 2B2Pz2P + B2[P, [P, z2]])f, f )

= ‖P 2f ‖2 + B4‖z2f ‖2 + 2B2‖zPf ‖2 − 2B2‖f ‖2

where P := −i∂x holds for all f ∈ S(R), which yields the following inequality:

‖z2f ‖ � B−2‖(P 2 + B2z2)f ‖ +
√

2B−1‖f ‖. (2.8)

Combining (2.7) and (2.8) we arrive at

‖zf ‖ � α‖(P 2 + B2z2)f ‖ + β‖f ‖ (2.9)

where α can be made arbitrarily small and β = β ′ +α′B−1
√

2. To check the analyticity at any
point p we employ the inequalities

‖H0f ‖ � ‖H(p)f ‖ + ‖a(·)(2p + 2B · +a(·))f (·)‖
� ‖H(p)f ‖ + 2B‖a‖∞‖zf ‖ + ‖a‖2

∞‖f ‖.
Applying (2.6) to the second term we get

(1 − 2α′B‖a‖∞)‖H0f ‖ � ‖H(p)f ‖ + (2β ′B + ‖a‖∞)‖a‖∞‖f ‖
and since α′ can be made arbitrarily small, the sought H(p)-boundedness of H(p′) − H(p)

follows from (2.9). To conclude the proof, it is sufficient to apply [Ka, theorems 7.2.6
and 7.1.8]. �

Let ψn(·, p) denote the eigenfunctions of the operator (2.2), i.e.

H(p)ψn(x, p) = εn(p)ψn(x, p). (2.10)

Recall that without loss of generality ψn can be chosen real-valued. Following [Iw] we put

Qn,p(x) = (p + Bx + a(x))2 − εn(p) (2.11)

so (2.10) reads ψ ′′
n (x, p) = Qn,p(x)ψn(x, p), and

ln(x, p) = ψ ′
n(x, p)

2 − Qn,pψn(x, p)
2.
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Lemma 2.3. ( [Iw, lemma 3.4]) ln(x, p) → 0 as |x| → ∞.

Finally, we have to know that the function

fn(x, p) := (p + xB + a(x))ψn(x, p)
2

which determines the potential part of the energy form decays fast enough for large p.

Lemma 2.4. For any p large enough there is c(p) > 0 such that

5c(p)e−p(x−x0) � fn(x, p) � c(p)

7
e−3p(x−x0) (2.12)

holds for all −a � x0 � x � a.

Proof. By lemma 2.1 there is p0 > 0 such that Qn,p(x) > 0 holds for all x ∈ [−a, a] and
|p| > p0. More than that, Qn,p(x) grows for a fixed x as |p| → ∞, which makes it possible
to to employ a semiclassical form for the tails of the eigenfunctions: for large enough p we
have

ψn(x, p) = c1(p)

Q
1/4
n,p(x)

exp

{
−

∫ x

x0

√
Qn,p(ξ) dξ

}
(1 + qn,p(x)) (2.13)

where

|qn,p(x)| � exp

[
1
2

∫ x

x0

|F ′
n,p(x

′)| dx ′
]

− 1 (2.14)

and

Fn,p(x) =
∫ {

Q−1/4
n,p (x)

d2

dx2
(Q−1/4

n,p (x))

}
dx

by [Ol, theorem 6.2.1]. Substituting for Qn,p(x) from (2.11), we get

F ′
n,p(x) = 5

4

(p + xB + a(x))2(B + b(x))2

[(p + xB + a(x))2 − εn(p)]5/2
− 1

2

(B + b(x))2 + b′(x)(p + xB + a(x))

[(p + xB + a(x))2 − εn(p)]3/2
.

Thus the integrand in (2.14) can be made arbitrarily small for large enough p. Consequently,
to a fixed λ > 1 we can always find pλ such that

exp

[
1
2

∫ x

x0

|F ′
n,p(x

′)| dx ′
]

� λ (2.15)

holds for all p > pλ. The representation (2.13) is valid at the halfline x � x0, so the coefficient
c1(p) is nonzero; without loss of generality we may suppose that it is positive. The behaviour
of ψn(x, p)/ψn(x0, p) is for x, x0 ∈ [−a, a] determined essentially by the exponential factor,
because (Qn,p(x0)/Qn,p(x))

1/2 can be then included into the error term. Since a(·) is bounded
and we consider x, x0 with a limited range, one has

1
2p �

√
Qn,p(ξ) � 3

2p

for all p larger than some p1 > 0, and therefore

9c1(p)
2

2p
e−p(x−x0) � ψn(x, p)

2 � c1(p)
2

6p
e−3p(x−x0)

if p > max(p1, p3/2), where p3/2 refers to λ = 3
2 in (2.15). To conclude the proof, note that

limp→∞(p + xB + a(x))p−1 = 1 holds for x ∈ [−a, a] and put c(p) := c1(p)
2. �
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Remarks 2.5. (i) For the sake of simplicity, we use large enough p in the above claim.
However, assumption (a) is not sensitive to mirror transformation which changes p to −p,
so the analogous result is valid as p → −∞. (ii) We need both an upper and a lower bound,
hence we cannot employ [Ag, He] as the authors of [BP] did; we have to resort to a more
traditional semiclassical method.

Now we are in position to prove the announced result under one of the following additional
assumptions.

Assumption (b). b(·) is nonzero and does not change sign in [−a, a].

Assumption (c). Let a- < ar , where we have put a- := sup{x : b(x) = 0 in (−∞, x)} and
ar := inf{x : b(x) = 0 in (x,∞)}. There exist c0, δ > 0 and m ∈ N such that one of the
following conditions holds:

|b(x)| � c0(x − a-)
m x ∈ [a-, a- + δ) (2.16)

or

|b(x)| � c0(ar − x)m x ∈ (ar − δ, ar ]. (2.17)

Theorem 2.6. Assume (a) and (b), or (a) and (c); then |ε′
n(p)| > 0 for each n ∈ N0 and all

|p| large enough. In particular, the spectrum of H is absolutely continuous.

Proof. To prove the absolute continuity, it is sufficient by theorem 13.86 of [RS] to show that
εn(·) is not constant for any n ∈ N0. The Feynman–Hellman formula implies

ε′
n(p) =

(
ψn(x, p),

dH(p)

dp
ψn(x, p)

)
= 2

∫ ∞

−∞
(p + Bx + a(x))ψn(x, p)

2 dx. (2.18)

Let us first investigate the integral on the semi-infinite intervals (−∞,−a] and [a,∞). Since

l′n(x, p) = −2(B + b(x))(p + Bx + a(x))ψn(x, p)
2 (2.19)

and b(x) = 0 for |x| > a, we can write

2
∫
(−∞,−a]∪[a,∞)

(p + Bx + a(x))ψn(x, p)
2 dx

= − 1

B

∫
(−∞,−a]∪[a,∞)

l′n(x, p) dx = 1

B
[ln(a, p) − ln(−a, p)]

where we have employed lemma 2.3. Using (2.19) for the second time, we can further rewrite
the last expression as

− 2

B

∫ a

−a

(B + b(x))(p + Bx + a(x))ψn(x, p)
2 dx

and thus equation (2.18) acquires the form

ε′
n(p) = − 2

B

∫ a

−a

b(x)(p + Bx + a(x))ψn(x, p)
2 dx

= − 2

B

∫ a

−a

b(x)fn(x, p) dx. (2.20)

The first claim of the theorem follows immediately since fn(x, p) has a definite sign in [−a, a]
for |p| large enough.
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Assume now that (c) is valid. We shall consider the condition (2.16) and suppose that
b(x) > 0 in (a-, a- + δ); the other cases can be treated in the same way (cf remark 2.5). In
view of lemma 2.4 the rhs of (2.20) can be estimated as follows:∫ a-+δ

a-

b(x)fn(x, p) dx +
∫ ar

a-+δ
b(x)fn(x, p) dx

� c(p)

7

∫ a-+δ

a-

b(x)e−3p(x−a-) dx − 5c(p)
∫ ar

a-+δ
|b(x)|e−p(x−a-) dx

� 1
7c0c(p)

∫ δ

0
ξme−3pξ dξ − 10ac0c(p)‖b‖∞e−pδ.

Estimating the exponential function in the first integral at the rhs from below by max{0, 1−3pξ}
we get

ε′
n(p) < −2c0c(p)

B

{
(3p)−m−1

7(m + 1)(m + 2)
− 10a‖b‖∞e−pδ

}
< 0 (2.21)

for all sufficiently large p. �

Remark 2.7. Since the perturbation is analytic at infinity by lemma 2.2 we know in fact more
than (2.21): under the assumptions of the theorem there are nonzero c± and positive integers
m(±) such that

εn(p) = (2n + 1)B + c±p−m(±)

+ O(p−m(±)−1)

as p → ±∞.

3. Number of gaps

In addition to the absolute continuity given by theorem 2.6 we want to know how the spectrum
ofH looks like as a set. It follows from (2.1) and (2.2) that σ(H) consists of a union of spectral
bands In:

In = [ inf
p∈R

εn(p), sup
p∈R

εn(p)]

the question is how many gaps between them remain open. In this section we will show that
their number is finite because the bands overlap at sufficiently high energies.

3.1. Field variation of a nonzero mean

We shall distinguish two different cases depending on whether the functional A[b] :=∫ a

−a
b(x) dx vanishes or not. Suppose first that A[b] is nonzero. In that case we have the

following proposition.

Proposition 3.1. Assume
∫ a

−a
b(x) dx �= 0. Let n(E, p) and n0(E) be the numbers of

eigenstates of H(p) and H0, respectively, with the eigenenergy smaller than E. Then for
any m ∈ N0 there exist p0 and E(m,p0) such that

(n0(E) − n(E, p0)) sgnA[b] > m

holds for all E > E(m,p0).
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Proof. The assumption
∫ a

−a
b(x) dx �= 0 is equivalent to a− �= a+. Suppose for definiteness

that A[b] < 0, i.e. a− > a+. Since we are interested in the high-energy limit we may accept
without loss of generality that the field variation support lies in the classically allowed region,
E > (p0 +xB +a(x))2 for any x ∈ [−a, a], and to employ the Bohr–Sommerfeld quantization
condition: by [Ti, theorem 7.5] we then obtain

πn(E, p0) =
∫ xr (E)

x-(E)

√
E − (p0 + xB + a(x))2 dx + O(E0) (3.1)

where the classical turning points

x-(E) = −
√
E + p0 − a−

B
xr(E) =

√
E − p0 − a+

B

satisfy by assumption the inequalities x-(E) < −a and xr(E) > a.
The idea is to compare (3.1) with the analogous expression for H0. Since the spectrum is

not affected by a shift of the potential, we change the variable in (2.4) as follows, z → z+a−/B,
and obtain

πn0(E) =
∫ xr0(E)

x-(E)

√
E − (p0 + xB + a−)2 dx + O(1).

We have used the fact that by construction the left turning point is the same for both potentials,
whereas the right one is moved to

xr0(E) =
√
E − p0 − a−

B
.

Since a− �= a+ we have a < xr0(E) < xr(E). Taking further into account that the two
potentials coincide to the left of −a, we may write the sought difference as

π [n(E, p0) − n0(E)] =
∫ a

−a

{√
E − (p0 + xB + a(x))2 −

√
E − (p0 + xB + a−)2

}
dx

+
∫ xr0(E)

a

{√
E − (p0 + xB + a+)2 −

√
E − (p0 + xB + a−)2

}
dx

+
∫ xr (E)

xr0(E)

√
E − (p0 + xB + a+)2 dx + O(E0) (3.2)

the last term being simply a positive number independent of E.
In the first term at the rhs of (3.2) we integrate over a fixed interval, hence the result

is O(E−1/2) as E → ∞ and may be absorbed into the error term. Furthermore, choosing
p0 � −a+ − aB we achieve that the integrand in the second term is positive, hence we have

π [n(E, p0) − n0(E)] �
∫ xr (E)

xr0(E)

√
E − (p0 + xB + a+)2 dx + O(E0).

It remains to estimate the last integral. Since the function is non-negative, decreasing and
vanishes only if x = xr(E), we take any δ ∈ (0, xr(E) − xr0(E)) and use a simple bound,∫ xr (E)

xr0(E)

√
E − (p0 + xB + a+)2 dx >

∫ xr (E)−δ

xr0(E)

√
E − (p0 + xB + a+)2 dx

�
√

2Bδ
√
E − B2δ2

(
a− − a+

B
− δ

)
which yields the sought result for E large enough. The inequality

n(E, p0) < n0(E) − m

for A[b] > 0 is obtained in the same way. �
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Corollary 3.2. If A[b] �= 0 the number of open gaps in the spectrum of H is finite.

Proof. Let again a− > a+. Since εn(p) → (2n + 1)B as p → ∞ for a fixed n ∈ N by
lemma 2.1, it is sufficient to find ñ and p̃ such that

εn+1(p̃) < (2n + 1)B (3.3)

holds for all n � ñ. This follows immediately from proposition 3.1 with m = 2. In the
opposite case, a− < a+, the inequality (3.3) is replaced by εn−1(p̃) > (2n + 1)B. �

3.2. The case of zero mean: an example

If A[b] = 0 the situation is more complicated since the two potentials differ only in
a subset of the interval (−a, a). We restrict ourselves to an example. As above, put
a- := sup{x : b(x) = 0 in (−∞, x)}, and suppose that there is a number c ∈ (a-, a) such that
a(x) < 0 holds in (a-, c) and a(c) = 0.

Let us show that the above conclusion about the finite number of gaps persists in this case.
We employ again the Bohr–Sommerfeld condition (3.1) choosing E and p in such a way that c
will be the right turning point, E = (p + Bc)2. It may happen, of course, that there is another
classically allowed region to the right of c but changing the potential to E there certainly does
not increase the number of bound states, i.e.

πn(E, p) �
∫ c

x-(E)

√
E − (p + xB + a(x))2 dx + O(E0).

This has to be compared with the number of oscillator states corresponding to a = 0.
Introducing the variable y := c − x we get

π [n(E, p) − n0(E, p)] �
∫ c−a-

0

√
2
√
E − By + a(c − y)

√
By − a(c − y) dy

−
∫ c−a-

0

√
2
√
E − By

√
By dy + O(E0).

The difference of the integrands can be written as

4
√

4E

[√
1 − By − a(c − y)

2
√
E

√
By − a(c − y) −

√
1 − By

2
√
E

√
By

]

= 4
√

4E
(√

By − a(c − y) −
√
By

)
+ O(E−1/4).

The error term can be absorbed into that of (3.2), hence we get

π [n(E, p) − n0(E, p)] � 4
√

4E
∫ c−a-

0

(√
By − a(c − y) −

√
By

)
dy + O(E0)

which gives the desired result since the integral is positive by assumption.
The result can be modified for the other end of supp b, and in a similar vein one can treat

cases where a(x) is locally positive close to an endpoint. We will not pursue the line further
since we believe that a deeper analysis of the behaviour around the classical turning points
would be useful, and at the same time, that the property in question is generally valid.

Conjecture 3.3. The number of open gaps in the local Iwatsuka model is finite for any nonzero
b satisfying minimal regularity assumptions such as those formulated in section 2.1.
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4. Example: a screened strip

In this section we shall discuss in more detail the example mentioned in the introduction. Apart
of the physical interest mentioned there, the system represents a solvable case which allows
us to illustrate the results of the previous sections.

4.1. The ideal situation

We shall consider first the simplest situation (without ‘overshoot’ in the terminology of [RPM])
when the distance between the film supporting the electrons and the superconducting strip is
negligible and the magnetic field is perfectly screened for |x| < a. Consequently, the field
perturbation b(x) is of the form

b(x) = −B3(a − |x|) (4.1)

with the vector potential

Ax = 0 Ay(x) = B(x − a)3(x − a) + B(x + a)3(−x − a). (4.2)

The fibre operator in the decomposition (2.1) then looks as follows:

H(p) = −∂2
x + [p + B(x − a)3(x − a) + B(x + a)3(−x − a)]2. (4.3)

The real line decomposes into a union of several parts in which the corresponding Schrödinger
equation can be solved. Inside the strip the potential term in (4.3) is constant and equal to p2,
so the eigenfunctions ψn(x, p) of H(p) are there of the form

ψn(x, p) = A exp[κn(p)x] + B exp[−κn(p)x] x ∈ [−a, a]

where κn(p) :=
√
p2 − εn(p). On the other hand, for x /∈ [−a, a] the function a is constant

and equal to its boundary values; in view of (2.3) they are

a− = −a+ = aB.

In other words, outside the strip the potential has a parabolic shape and its two branches are
shifted mutually by 2a. Thus we use the substitutions

z =
{
x + a + p/B . . . x < −a

x − a + p/B . . . x > a
(4.4)

denote r = Bz2 and look for solutions of equation (2.10) in the form

ψn(z, p) = exp(−r/2)un(r, p). (4.5)

In a usual way we check that un(r, p) satisfies the confluent hypergeometric equation [AS],

ru′′
n(r, p) + ( 1

2 − r)u′
n(r, p) − αun(r, p) = 0

with α := B−εn(p)

4B . Consequently, the general solution in the ‘parabolic regions’ is of the form

ψn(x, p) = e−r/2{C1M(α, 1
2 , r) + C2U(α, 1

2 , r)}.
We should not forget, however, that r in this formula comes from two different
substitutions (4.4), and moreover, that the map z �→ r is not a bijection. With the exception of
the case p = 0 the real line therefore decomposes into four intervals. In the outer regions the
requirement of L2 integrability leaves the term with the U function only, while in the middle
‘parabolic regions’ both functions are generally contained in the linear combination. Denote

x0 = −p

B
− a sgn (p).
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For p < 0 this point where the potential reaches zero is to the right of the strip, a < x0, and
we have

ψn(x, p) =



D1e−r/2U(α, β, r) −∞ < x < −a

A exp[κn(p)x] + B exp[−κn(p)x] −a � x � a

e−r/2{C1M(α, β, r) + C2U(α, β, r)} a < x < x0

D2e−r/2U(α, β, r) x0 � x < ∞
(4.6)

and a similar expression for p > 0 when x0 < −a. In the case when p = 0 we set x0 = −a

by definition, then C1 = 0 and C2 = D1. Matching the solutions (4.6) smoothly at the
points −a, a, x0 we arrive at a homogeneous system of six linear equations for the coefficients
A,B,C1, C2,D1, and D2, which yields an implicit equation for the energy levels εn(p).

4.2. The model with an overshoot

The above model is, of course, idealized because in reality the magnetic field is never fully
screened and the vector potential changes sharply near the edges of the screening strip. Another
simplified description takes this effect into account by putting

b(x) = −B3(a − |x|) + B|x|δ(|x| − a) (4.7)

which corresponds the vector potential

A(x) = xB3(|x| − a).

Recall that a numerical analysis performed in [RPM] for a screening by a disc suggests that
a realistic field profile should lie between these two extrema. The fibre operator in (2.1) now
reads

H(p) = −∂2
x + [p + Bx3(|x| − a)]2. (4.8)

Inside the strip we get the same solution as in the model without an overshoot. However, the
boundary values of the function a(x) given by (2.3) are now equal to each other,

a± = lim
η→1+

∫ ±ηa

0
b(x) dx = 0

hence for x /∈ [−a, a] we use the same substitutions to the left and to the right of the strip,

z′ = x + p/B and r ′ = B(z′)2.

In analogy with section 4.1 we find the overshoot solutions ψ̃n(x, p) of (4.5) in the form

ψ̃n(x, p) =



D′

1e−r ′/2U(α, β, r ′) −∞ < x < −a

A′ exp[κn(p)x] + B ′ exp[−κn(p)x] −a � x � a

e−r ′/2{C ′
1M(α, β, r ′) + C ′

2U(α, β, r ′)} a < x < x ′
0

D′
2e−r ′/2U(α, β, r ′) x ′

0 � x < ∞
(4.9)

where x ′
0 = −p/B. In (4.9) we assume p < −Ba. A similar expression is valid if p > Ba

in which case is x ′
0 < −a. For |p| < Ba we set C ′

1 = 0 and C ′
2 = D′

2. Matching the
functions (4.9) smoothly at the points −a, a, x0 we arrive again at an implicit equation for the
energy levels ε̃n(p).
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Figure 1. The band functions in the units of B for B = 103, a = 0.01 (dotted curves), a = 0.02
(dashed curves) and a = 0.03 (full curves). (Left) the ideal situation. (Right) the model with an
overshoot. The thick lines show the Landau levels.

4.3. Numerical results

Using the Ansätze (4.6) and (4.9) for the two described models, we have solved the matching
conditions numerically for several values of the parameters. The obtained band functions,
denoted εn(p) and ε̃n(p) for the case without and with the overshoot, respectively, are plotted
in figure 1.

We see that in the ideal situation (without an overshoot) the band functions εn(p) have the
only stationary point at p = 0. This is true for any n as it follows from equation (2.20) which
now acquires the form

ε′
n(p) = 2p

∫ a

−a

ψn(x, p)
2 dx. (4.10)

The situation is completely different in the presence of an overshoot. Here the fibre
operator (4.8) can be rewritten as a sum of H0 with the perturbation supported in [−a, a].
Consequently, in general, the functions ε̃n(p) exhibit many oscillations corresponding to the
harmonic oscillator solutions. Following this argument we would expect that in higher levels
these oscillations will be partially ‘ironed’ out for sufficiently large a. As an illustration, see
the curves for n = 6 in figures 1 and 2.

In section 3.1 we have shown that if the functional A[b] is nonzero the number of open
spectral gaps is finite. Since the field variation (4.1) of the ideal model gives A[b] = −2Ba,
it follows from proposition 3.1 that for a large enough band index n, depending on a and B,
the width of the spectral band In exceeds 2B, the distance between Landau levels. Moreover,
applying the Bohr–Sommerfeld quantization rule we can easily derive an explicit condition
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Figure 2. Overlap of the spectral bands. (Left) the ideal situation: a = 0.015 (dashed curves),
a = 0.02 (full curves). (Right) the model with an overshoot: a = 0.03 (dashed curves), a = 0.045
(full curves). The field is always B = 103.

Figure 3. The squared eigenfunctions for n = 0, 6, and different values of p. The dashed lines
indicate the position of the nonmagnetic strip with a = 0.03, the field is B = 103.

under which this happens:

noverlap(a, B) � 1

2
+

π2

8a2B
. (4.11)

This is shown in figure 2. In the case of the overshoot model with the field variation given
by (4.7) we have no simple condition analogous to (4.11). Nevertheless, the assumptions of
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the example of section 3.2 are satisfied here so we know that at sufficiently high energies the
spectral bands overlap in this case too.

On a heuristic level, this can be understood from the behaviour of the harmonic oscillator
solutions. It is well known that for large n they are strongly oscillating but the squared
modulus smoothed over a small interval tends as n → ∞ to the probability density of finding
the classical oscillator at a given point [BEH, section 8.3]. The latter diverges at the turning
points. Taking for the difference between ε̃n(p) and the corresponding Landau level the first-
order perturbation theory expression, we therefore expect this quantity to reach its maximum
for the values of p corresponding to the vicinity of the turning points. Figure 2 illustrates that
it is indeed the case.

Once we have solved the matching conditions for the band functions we can also find
the coefficients in (4.6) and (4.9) to obtain complete eigenfunctions ψn(x, p) and ψ̃n(x, p),
respectively. Figure 3 shows the corresponding probability densities for ground state and the
excited state with n = 6. In the absence of an overshoot it can be seen that as the screened
strip [−a, a] crosses the centre of the distribution, each particular peak of the density becomes
broader and more smeared. On the other hand, for large |p| when the ‘bulk’ of the |ψn(x, p)|2
support lies outside the strip, its shape is close to that of the harmonic-oscillator probability
density. In the case of an overshoot the picture is similar but the plot shows a significant
deformation for the value of |p| corresponding to the classical turning points.
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[BP] De Bièvre S and Pulé J V 1999 Propagating edge states for a magnetic Hamiltonian Math. Phys. El. J. 5 (3)
[Ca] Calvo M 1993 Exactly soluble two-dimensional electron gas in magnetic-field barrier Phys. Rev. B 48 2365–9
[CFKS] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Applications to Quantum

Mechanics and Global Geometry (Berlin: Springer)
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[MS] MacDonald A H and Středa P 1984 Quantized Hall effect and edge currents Phys. Rev. B 29 1616–9
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